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The immune system plays a crucial role in maintaining health; however, accumulating evidence
indicates that this system can be the target for immunotoxic effects caused by a variety of
chemicals including the environmental pollutants of polychlorinated biphenyls, chlorinated
dibenzo-p-dioxins, pesticides, and heavy metals. Adverse chemical-induced immunomodulation,
which is studied within the discipline of immunotoxicology, may be expressed either as

immunosuppressionfimmunodepression or immunoenhancement. The former may be manifested
either as decreased resistance to opportunistic viral, bacterial, fungal, and other infectious agents
or increased susceptibility to cancer. Immunoenhancement on the other hand may either
increase the risk of autoimmune reactions or result in allergic reactions. This paper attempts to
integrate several aspects of the immune system that are relevant to the assessment of potentially
immunotoxic chemicals. Environ Health Perspect 103(Suppl 9):17-22 (1995)
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Introduction
This review provides a general overview of
immunotoxicology. The immune system
evolved to protect the host from potentially
pathogenic agents including micro-
organisms (viruses and bacteria), parasites,
and fungi; to eliminate neoplastic cells; and
to reject nonself components (1). Differen-
tiated lymphoid organs first appear in the
primitive forms of fish, with an increase in
structural definition through amphibians
and reptiles to birds and mammals. Conse-
quently, several biomarkers of the immune
response can be specific for all vertebrates
(2). From the toxicologic point of view, the

immune system can be a target for toxic
effects of chemicals, therapeutic drugs, or
any other foreign substances called xenobi-
otics (3). Chemically induced immunotoxic
effects are investigated within the discipline
of immunotoxicology (4-8). According to
the recommendations of the International
Seminar on the Immunological System as a
Target for Toxic Damage:

"a chemical substance should be consid-
ered immunotoxic when undesired
events of the chemical are: (i) a direct
and/or indirect action of the xenobiotic
(and/or its biotransformation product)
on the immune system; or (ii) an
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immunologically based host response to
the compound and/or its metabolite(s),
or host antigens are modified by the
compound or its metabolite(s)" (9).
The adverse immunotoxic effects of

xenobiotics include organ damage of the
immune system, such as necrosis; multiple
histopathologic effects in the thymus, the
bone marrow, and the lymph nodes; chem-
ical-induced cellular pathology, including
abnormal proliferation of stem cells in the
bone marrow; altered maturation of
immunocompetent cells and changes in B-
and T-cell subpopulations; functional
alterations of immunocompetent cells gen-
erally classified as altered humoral-
mediated immunity (HMI), cell-mediated
immunity (CMI), or nonspecific responses
(NSR); two-directional interaction of the
immune system with xenobiotic detoxifica-
tion and biotransformation mechanisms
generally observed as an impairment of
chemical elimination in immunodeficient
individuals; xenobiotic-related in vivo
functional immunopathology, such as
weakened host resistance to viral and bacte-
rial infections and to parasitic infestations;
and altered immune surveillance mecha-
nisms leading to increased incidence of
cancer (10,11). Thus, structural and func-
tional alterations of the immune system
may lead to immunodepression/immuno-
suppression, which may modify the host
defense mechanisms against infection
and cancer, and induction of abnormal
immune responses resulting in allergy and
autoimmunity (4-8,12-14).

Diversity of
Immunotoxic Effects
A number of chemical-induced immunotoxic
effects have been reported; these effects can
be organ specific, cell specific, immune
function specific, they can be secondary
following toxic effects of other organs, or
they can be nonspecific (4,5,13-17). A
brief classification of these immunotoxic
effects is presented below in relation to the
effects of currently recognized immuno-
toxic chemicals.

Alterations of the normal immune
response usually result in increased sus-
ceptibility to viral, bacterial, or parasitic
infections and to cancers. The type of
adverse effect produced in the immune
system upon exposure to a xenobiotic
characterizes that xenobiotic as immuno-
suppressive or immunodepressive or as
immunopotentiating.

Environmental Health Perspectives - Vol 103, Supplement 9 * December 995 7



KRZYSTYNIAK ETAL.

Immunosuppression and immuno-
depression are detected as marked decreases
in immune function measured as an effect
on humoral, cellular, or nonspecific para-
meters of the immune system. Immuno-
suppression is known to be produced by
chemotherapy. Several cytostatic drugs
including cyclosporin A, cyclophospha-
mide (CPS), azathioprine, and prednisone,
used in transplantation, are considered
immunosuppressive drugs (18). Cytostatic
drugs were shown to be inadvertently
responsible for various types of cancer and
increased susceptibility to infections in
organ transplant patients (7,18). Heavy
metals are considered to be immunosupres-
sive and are ranked according to their
immunosuppressive properties as follows:
mercury > copper > manganese > cobalt >
cadmium > chromium (19). Many envi-
ronmental contaminants such as 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD),
2,3,7,8,-tetrachlorodibenzofuran (TCDF),
polychlorinated biphenyls (PCBs), poly-
brominated biphenyls (PBBs), organo-
chlorine insecticides, and alkylating
agents were shown to have a potential for
immunosuppression in experimental mod-
els (15,18,20-26). Overall, exposure to
such environmental contaminants can result
in immunosuppression leading to decreased
resistance to infections in experimental ani-
mals and humans. This is particularly true
for systemic exposure to heavy metals such
as arsenic, cadmium, lead, mercury, nickel,
and organotins, which adversely impair the
immune response and decrease host resis-
tance to infectious agents and cancers (19).
However, host defense mechanisms against
various infectious agents involve different
components of the immune system.
Therefore, interpretation of experimental
data is complicated when only a limited
number of infectivity assays are used. For
example, CPS was shown to affect host
resistance in several viral and bacterial
infections, except for herpes virus-2 (HSV-
2) and C. neoformans for which even
increased resistance in CPS-exposed ani-
mals was reported (27). Therefore,
data from several different experimental
bacterial and viral infectivity models and
experimental tumor models are often
needed to conclusively demonstrate poten-
tial chemically induced alterations in host
defense mechanisms.

It is generally accepted that efficient
modification of the host's antitumor
responses through augmentation or
restoration of existing effector mecha-
nisms might be beneficial (28,29). These

beneficial agents are called biologic
response modifiers (BRMs) and produce
immunorestoration or immunopotentia-
tion. BRMs have been successfully applied
to individuals whose immune systems are
compromised due to malnutrition, aging,
acute and chronic infections, and cancer
(29). BRMs, including interferons, inter-
leukins, levamisole, and dithiocarbamate
derivatives, have been shown to potentiate
the immune response in immunopharma-
cologic studies (28,29). Other immuno-
potentiating/immunorestoring drugs such
as isoprinosine, muramyl dipeptide,
azimexon, bestatin, tuftsin, and pyrimidi-
noles have also been reported to alleviate
symptoms or to shorten the duration of
disease (29).

The beneficial effects derived from the
therapeutic application of BRMs, however,
should be clearly discriminated from the
uncontrolled and undesired immunopoten-
tiating effects produced by several environ-
mental chemicals such as cadmium, lead,
carbamate pesticides, skin sensitizers, and
autoimmunity-inducing drugs (19,30-32).
Such responses can be classified as hyper-
sensitivity or autoimmunity. Chemical-
induced hypersensitivity, manifested
primarily as a contact sensitization, is
defined as an undesired disproportionate
increase in the adaptive immune response
following repeated exposure to a chemical
(33). There are essentially four major types
of hypersensitivity responses, three of
which are mediated by the anaphylactic
immunoglobulins (Ig) of the IgE or IgG
isotype, and the fourth, is a so-called
delayed-type hypersensitivity (DTH),
which is mediated by a subpopulation of
T lymphocytes (33).

Substances capable of eliciting hyper-
sensitivity responses in presensitized indi-
viduals are called allergens. Allergens elicit
hypersensitivity responses by triggering the
effector mast cell in a two-stage process in
which the allergen-induced anaphylactic
antibodies bind to cell-surface receptors
and activate the mast cells to release media-
tors such as biogenic amines, lipid media-
tors, and cytokines. The IgE-mediated
hypersensitivity, classified as type I hyper-
sensitivity and commonly known as aller-
gies, such as hay fever and certain types of
asthma, can be causally linked to exposure
to pharmacologic agents (34).

Several occupational allergies, including
asthma, can be also induced by chemicals
such as platinum halide salts, antibiotics,
diisocyanates, epoxy resin activators, ammo-
nium persulfate, and heavy metals such as

beryllium (34,35). Thus, these substances
must be considered immunotoxic.

There are situations in which individuals
exhibit clinical characteristics of immediate-
type hypersensitivity responses without a

proven involvement of any anaphylactic
antibodies of the IgE or IgG isotype
(36,37). These symptoms may range from
skin rashes to, occasionally, fatalanaphylaxis.
This so-called pseudoallergy, although not
antibody-mediated, is suspected to be medi-
ated by sensitized lymphocytes and associ-
ated cytokines. Pseudoallergy may be
induced by many chemicals including cer-
tain polypeptide hormones, antibiotics,
intravenous anesthetics, and radiographic
contrast media (37).

The combination of xenobiotics with
host tissue constituents in certain suscepti-
ble individuals can lead to the production
of antibodies directed against tissue or cell
surface antigens. Tissue injury and disease
can result from recruitment and activation
of inflammatory cells and complement
activation. This type of response is called
type II hypersensitivity (36,37).

The conjugation of certain low molecu-
lar weight substances to host proteins can
elicit high levels of circulating IgG or IgM
antibodies, which can lead to the forma-
tion and deposition of immune complexes,
particularly in blood vessels, and can cause
tissue injury and disease through the
recruitment and activation of inflammatory
cells and complement activation. Immune
complex-mediated diseases are classified as
type III hypersensitivity (36,37).

Finally the type IV hypersensitivity
reaction DTH is mediated by activated
macrophages and sensitized T lymphocytes.
A classical example ofDTH is allergic con-
tact dermatitis, which can be induced by a
number of environmental and occupational
agents. For example, heavy metals such as
chromium, cobalt, mercury, and nickel are
known to be strong skin sensitizers in
experimental animals (38). Among the
heavy metals, nickel and beryllium have
been shown to elicit DTH responses in
susceptible individuals (35).

Autoimmunity, sometimes called
autoallergy is defined as the body's
immune system turning against itself by
producing lymphocyte subsets that are
reactive with the host's self-components.
These lymphocytes may be B-cells that
upon activation may synthesize and secrete
autoantibodies, T-cells that attack and
destroy target organs, or a combination of
both. Basically, a multifactorial etiology is
involved in inducing the production of
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altered-self structures of the host, which
consequently might trigger autoimmune
reactions (31,32). Factors such as age,
nutritional status, and the genetic constitu-
tion may predispose the individual to
autoimmunity (31). Moreover, environ-
mental and occupational agents have the
potential of inducing autoimmunity in sus-
ceptible individuals. Indeed, chemicals may
combine with and modify the host's tissue
antigens (32), trigger the release of tissue
components that are not normally present
systemically, or cause autoimmunity by
directly affecting lymphocytes or macro-
phages. Humans exposed to gold salts and
mercury-containing compounds have
experienced immune complex glomerulo-
nephritis, which may progress to interstitial
immune complex nephritis (39).

Toxicologic End Points
Predictive of Immunotoxicity
Review of routine toxicity data can provide
an insight into the potential action of a
particular chemical on the immune system
(40); weight loss or reduced weight gain is
a sign of toxicity that may complicate the
interpretation of possible direct effects on
the immune system. Alterations in adrenal
weight and morphology may signal
changes in stress-mediated adrenal gluco-
corticoid hormones and subsequent induc-
tion of lymphopenia or lymphoid
depletion, especially in the thymus (41);
alterations in the size and weight of the
thymus reflected as a loss in cortical lym-
phocytes, often referred to as thymic atro-
phy, are important especially in subchronic
studies conducted on young animals in
which the thymus is at its maximal size
(42). Reduction in the weight of the
spleen, reflected microscopically in the
reduction in size of germinal centers, often
follows a reduction in the periarterial lym-
phoid sheath portion as well as reduction
in the size of the gut-associated lymphoid
tissue (Peyer's patches) (43). Bone marrow
changes manifested in sustained anemia
and an increase in the myeloid/erythroid
ratios can be attributed to a selective effect
on the erythroid stem cells and on ery-
throid maturation processes (22,44);
changes in the cellular components of
blood, especially in leukocyte counts, can
be detected in subchronic studies. These
may include an increase, a decrease, or
shifts in cellular components during a
differential count (45). Decreased levels
of serum protein, due primarily to an
increase in the albumin, lead to changes in
the albumin/globulin ratio, changes in

globulin levels normally due to a reduction
in a-globulins, and total serum immuno-
globulins (45).

Additional toxicologic indices, which
can be useful in determining whether a
chemical is potentially immunotoxic,
include metabolic/biochemical interactions,
such as the binding or sequestering of
lipophilic xenobiotics to lipoprotein carriers
(46), and subsequent distribution, activity,
elimination, or bioactivation (47). For
example, the immunomodulating chemi-
cals, CPS and N-nitrosodimethylamine,
require metabolic activation for their action
on the immune system. Thus, immunosup-
pression can be demonstrated in vitro only
in co-cultures of the immunocompetent
cells with hepatocytes (47,48). Overall, a
variety of structural changes in the immune
system observed during subchronic and
chronic toxicity studies can be useful indi-
cators of a potential immunotoxic effect of
chemicals and can be used as a base in
designing further immunotoxicity studies.

Evaluation of Chemical-
induced Immunotoxicity
The structural and functional complexity
of the immune system requires that multi-
ple parameters be examined for a compre-
hensive evaluation of chemically induced
immunomodulation to be made.

Current guidelines for toxicity testing
of chemicals published by the Organization
of Economic Cooperation for Development
(OECD) include bioassays for acute, short-
term, and long-term toxicity, as well as
tests for carcinogenicity, mutagenicity,
teratogenicity, and reproductive and devel-
opmental toxicity (49). Regarding the
immunotoxic potential of chemicals, the
OECD guidelines in their present form are
restricted to the quantitative assessment of
total and differential leukocyte counts and
histopathologic examination of the spleen.
However, recent studies have shown that
the present form of the OECD guidelines
is not suitable for an adequate assessment
of potentially immunotoxic chemicals
(50). Currently, efforts are been made
internationally to modify the OECD
guidelines to include additional immune-
related tests that may predict the immuno-
toxic potential of chemicals (H Koeter,
personal communication). Meanwhile, a
number of proposed guidelines and
detailed methodology have been published
for the assessment of chemically induced
immunotoxicity using the mouse and the
rat as the animal models (4,6-8,51-54).
Due to the complexity of the immune

system, a two-tier approach has been
suggested. Tier I is usually a screen for
potentially immunotoxic chemicals and
contains assays that evaluate immuno-
pathology, HMI, CMI, and NSI. Tier II
consists of specific confirmatory immune
tests and in-depth mechanistic studies. Tier
II of the proposed guidelines for immuno-
toxicity testing also provides a comprehen-
sive assessment of host resistance to
challenge with syngeneic tumors and bacte-
rial, viral, or parasitic agents (6,7). The
inclusion of infectivity assays into Tier II is
important since a higher incidence of mor-
tality due to infection was observed in
exprimental animals, wildlife, and fish
whose immune systems were compromised
following exposure to chemicals as com-
pared to the incidence in nonexposed ani-
mals (20,55-57). Also, early epidemiologic
studies indicated that decreased antiviral
resistance in children could be a conse-
quence of immunosuppression due to mas-
sive spraying of forestry insecticides or
chemical carriers in the insecticide formu-
lations (21). Generally then, a series of
quantitative and functional immunologic
assays are designed to test for adverse effects
of chemicals on the immune system.

Progress in intra- and interlaboratory
validation of immunotoxicologic methods
regarding their potential for predicting
immune effects of xenobiotics revealed that
the plaque-forming cell (PFC) technique,
combined with the assays for natural killer
(NK) cell activity, the analysis of lympho-
cyte subpopulations, the mitogen-induced
B- and T-cell proliferation, and the DTH
response, had a high degree of concordance
with the predicted immunotoxic properties
of chemicals (6). These functional assays,
when combined with other functional and
quantitative techniques, can be powerful
tools in localizing the type of cell function
targeted by immunotoxic chemicals. For
example, quantification of the humoral
response at a single cell level by the PFC
method combined with quantification of
specific antibody production using the
enzyme-linked immunosorbent assay
(ELISA) technique (50), and investigations
regarding the function of the antigen pre-
senting cells following exposure to the
organochlorine pesticide dieldrin revealed
that the observed effect on antibody pro-
duction was due to a chemical-related
effect on antigen presentation by the
mononuclear phagocytic cell (23,24).
Overall, it was concluded that a good cor-
relation existed between changes in the
immune tests and altered host resistance.
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No single immune test, however, could be
identified that was fully predictive for
altered host resistance, although most
assays were relatively good indicators (6,7)
for immunotoxic effects of chemicals.

While the majority of quantitative and
functional immune assays were developed
and validated for use in the mouse and rat
(4,6,49), the increased use of other species
in immunotoxicity studies has prompted
the development and validation of a num-
ber of immune assays in species other than
rodents. Several of these assays were shown
to be good predictors of the immunotoxic
potential of environmental chemicals and
included assays for nonhuman primates
(15,25,26,58,59), dogs (60-64), marine
mammals (65), and fish (2,57,65). Several
new end points of potential usefulness in the
assessment of chemically induced immuno-
toxicity have been proposed in recent years
(4,6,16,17,42). These include quantifi-
cation of cytokines such as interleukins,
interferons, and other factors secreted by
lymphocyte and monocyte/macrophage
cells. Other advanced histologic techniques,
including immunohistochemistry, in situ
hybridization, electron microscopy, confocal
laser scanning microscopy, and computer-
ized image analysis have been introduced
for better understanding of drug-related
immunotoxicity (66).

Methods for evaluating chemical skin
sensitizers and chemically modified self-
antigens that use the guinea pig as the ani-
mal model include the occluded patch test
(Buchler test), nonadjuvant topical guinea
pig skin sensitization immediate hypersen-
sitivity reactions, and guinea pig maximiza-
tion test (67-69). The local lymph node
assay was primarily proposed as a predic-
tive test for the identification of contact
allergens (30,70). The mouse ear swelling
test was developed as an alternative test for

delayed contact hypersensitivity (71). The
popliteal lymph node (PLN) enlargment in
mice and rats was proposed as a predictive
test of autoimmunity-inducing drugs
(31,32). While the mechanism of PLN
enlargment by low-moleculer autoimmu-
nity-inducing drugs is not well understood,
results obtained with the graft-versus-host
technique and quantification of activated
CD4+ and CD8+ T-cell subsets by flow
cytometry provided unequivocal evidence
for chemical-induced dysregulation leading
to autoimmune phenomena (14,31,72).

Finally, development of in vitro models
for immunotoxicity testing would be
clearly advantageous, especially in studies
involving human peripheral blood lympho-
cytes directly exposed to the chemical of
interest (17). This approach, however, is
restricted by the limited number of avail-
able in vitro techniques and the frequently
observed lack of correlation between in
vivo and in vitro results and is limited only
to highly immunosuppressive chemicals
that do not require metabolic activation
(17,47,48). A good example of new
approaches in the in vitro studies is the
increasing appreciation of the relevance of
programmed cell death (apoptosis) (73).
The apoptotic cell death assay was recently
applied to lymphoid cell lines to study the
effects of chemical immunotoxicants on
programmed cell death (74,75).

Summary
A general overview of immunotoxicology
has been presented. The immune system is
a structurally and functionally complex
system composed of several cell popula-
tions and organs strategically placed
throughout the host's body. Maturation of
the immune system depends largely on its
encounter with exogenous agents including
microbial infections while regulation of

the immune system is a function of
cell-cell interactions mediated by a variety
of adhesion molecules and endogenously
produced substances including the
cytokines, which interact with receptors
found on the cell surface. The structural
and functional integrity of the immune
system are crucial in performing its protec-
tive role against pathogenic agents and the
development of cancer. Thus, any chemi-
cally induced perturbation of the host's
immune system can compromise its pro-
tective capacity and may lead to adverse
health consequences for its host. An array
of immunological methods have been
developed and validated during the last
decade. These methods have been used
extensively to study quantitative and func-
tional aspects of the immune system in
experimental animals and, to a lesser extent,
in humans accidentally exposed to poten-
tially immunotoxic chemicals either occu-
pationally or by eating contaminated food.
These studies indicated that chemicals of
environmental concern can affect the
immune system adversely and have assisted
in unraveling the mechanisms of action for
some of these chemicals. Such studies have
contributed to the process of evaluating
the potential risk chemicals may pose to
human health. Although an impressive
progress has been made in the field of
immunotoxicology during the last decade,
much work remains to be done in in vitro
immunotoxicology and in the application
of methods developed in experimental ani-
mals to the human situation. Such efforts
combined with the many established
immunotoxicology principles and methods
will, undoubtedly, increase the degree of
confidence in data extrapolation from
experimental animals to humans.
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